当前位置: 首页 高考统招 高考真题 2016年高考四川卷文数试题(含答案)

2016年高考四川卷文数试题(含答案)

2020-03-26 00:39:48


2016年高考四川文科数学
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i为虚数单位,则复数(1+i)2=
(A) 0    (B)2   (C)2i  (D)2+2i
2.设集合A={x11≤x≤5},Z为整数集,则集合A∩Z中元素的个数是
(A)6    (B) 5      (C)4     (D)3
3.抛物线y2=4x的焦点坐标是
(A)(0,2)    (B) (0,1)      (C) (2,0)    (D) (1,0)
4.为了得到函数y=s的图象,只需把函数y=sx的图象上所有的点
(A)向左平行移动个单位长度      (B) 向右平行移动个单位长度      
(C) 向上平行移动个单位长度     (D) 向下平行移动个单位长度
5.设p:实数x,y满足x>1且y>1,q: 实数x,y满足x+y>2,则p是q的
(A)充分不必要条件    (B)必要不充分条件     
 (C) 充要条件       (D) 既不充分也不必要条件
6.已知a函数f(x)=x3-12x的极小值点,则a=
(A)-4    (B) -2      (C)4     (D)2
7.某公司为激励创新,计划逐年加大研发奖金投入。若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是
(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) (A)2018年    (B) 2019年      (C)2020年    (D)2021年
8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为

(A)35    (B) 20      (C)18    (D)9
9.已知正三角形ABC的边长为,平面ABC内的动点P,M满足,则的最大值是
(A)   (B)       (C)     (D) 
10. 设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B则则△PAB的面积的取值范围是
(A)(0,1)    (B) (0,2)      (C) (0,+∞)    (D) (1,+ ∞)
11、 =       。
12、 已知某三菱锥的三视图如图所示,则该三菱锥的体积       。

13、 从2、3、8、9任取两个不同的数值,分别记为a、b,则为整数的概率=        。
14、 若函数f(x)是定义R上的周期为2的奇函数,当015、 在平面直角坐标系中,当P(x,y)不是原点时,定义P的"伴随点"为P(,),当P是原点时,定义"伴随点"为它自身,现有下列命题:
?若点A的"伴随点"是点,则点的"伴随点"是点A.
?单元圆上的"伴随点"还在单位圆上。
?若两点关于x轴对称,则他们的"伴随点"关于y轴对称
④若三点在同一条直线上,则他们的"伴随点"一定共线。
其中的真命题是        。
16、(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),......[4,4.5]分成9组,制成了如图所示的频率分布直方图。

(I)求直方图中的a值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;
(Ⅲ)估计居民月均用水量的中位数。
17、(12分)
如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=1/2AD。

(I)在平面PAD内找一点M,使得直线∥平面PAB,并说明理由; 
(II)证明:平面PAB⊥平面PBD。

18、(本题满分12分)
在△ABC中,角A,B,C所对的边分别是a,b,c,且。
(I)证明:sAsB=sC;
(II)若,求tB。
19、(本小题满分12分)
已知数列{}的首项为1, Sn为数列{}的前n项和,Sn+1=Sn+1,其中q0,n∈N+
(Ⅰ)若a2,a3,a2+ a3成等差数列,求数列{}的通项公式;
(Ⅱ)设双曲线x2=1的离心率为,且e2=2,求e12+ e22+...+2,
20、(本小题满分13分)
已知椭圆E:+=1(ab0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上。
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:MA簟うMB=MC簟うMD
21、(本小题满分14分)
设函数f(x)=ax2-a-x,g(x)=-,其中a∈R,e=2.718...为自然对数的底数。
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立。

2016年普通高等学校招生全国统一考试(四川卷)
数学(文史类)试题参考答案
一、选择题
1.C  2.B  3.D  4. A   5.A  6.D  7.B  8.C  9.B  10.A
二、填空题
11.    12.    13.      14.-2       15.②③
三、解答题
16.(本小题满分12分)
(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08×0.5=0.04.
同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.
由1-(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5×a+0.5×a,
解得a=0.30.
(Ⅱ)由(Ⅰ),100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.
由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.13=36000.
(Ⅲ)设中位数为x吨.
因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,
而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5
所以2≤x<2.5.
由0.50×(x-2)=0.5-0.48,解得x=2.04.
故可估计居民月均用水量的中位数为2.04吨.
17.(本小题满分12分)

(I)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:
  因为AD‖BC,BC=AD,所以BC‖, 且BC=.
  所以四边形CB是平行四边形,从而‖AB.
  又AB 平面PAB,  平面PAB,
  所以∥平面PAB.
  (说明:取棱PD的中点N,则所找的点可以是直线上任意一点)
(II)由已知,PA⊥AB, PA ⊥ CD,
    因为AD∥BC,BC=AD,所以直线AB与CD相交,
  所以PA  ⊥平面ABCD.
  从而PA  ⊥  BD.
  因为AD∥BC,BC=AD,
  所以BC∥MD,且BC=MD.
  所以四边形是平行四边形.
  所以=CD=AD,所以BD⊥AB.
  又AB∩AP=A,所以BD⊥平面PAB.
  又BD 平面PBD,
  所以平面PAB⊥平面PBD.

18.(本小题满分12分)
(Ⅰ)根据正弦定理,可设 
则a=ks A,b=ks B,c=ksC.
代入中,有
,可变形得
s A s B=s Acos B=s (A+B).
在△ABC中,由A+B+C=π,有s (A+B)=s (π-C)=s C,
所以s A s B=s C.
(Ⅱ)由已知,b2+c2-a2=bc,根据余弦定理,有
.
所以s A=.
由(Ⅰ),s As B=s Acos B +cos As B,
所以s B=cos B+s B,
故t B==4.
19.(本小题满分12分)
(Ⅰ)由已知, 两式相减得到.
又由得到,故对所有都成立.
所以,数列是首项为1,公比为q的等比数列.
从而.
由成等差数列,可得,所以,故.
所以.
(Ⅱ)由(Ⅰ)可知,.
所以双曲线的离心率.
由解得.所以,

20.(本小题满分13分)
(I)由已知,a=2b.
又椭圆过点,故,解得.
所以椭圆E的方程是.
(II)设直线l的方程为, ,
由方程组 得,①
方程①的判别式为,由,即,解得.
由①得.
所以M点坐标为,直线OM方程为,
由方程组得.
所以.

.
所以.


21.(本小题满分14分)
(I) 
 <0,在内单调递减.
由=0,有.
当时,<0,单调递减;
当时,>0,单调递增.
(II)令=,则=.
当时,>0,所以,从而=>0.
(iii)由(II),当时,>0.
当,时,=.
故当>在区间内恒成立时,必有.
当时,>1.
由(I)有,从而,
所以此时>在区间内不恒成立.
当时,令=().
当时,=.
因此在区间单调递增.
又因为=0,所以当时,=>0,即>恒成立.
综上,.